Complex Analysis: Resit Exam

Aletta Jacobshal 02, Thursday 13 April 2017, 18:30-21:30
Exam duration: 3 hours

Instructions - read carefully before starting

- Write very clearly your full name and student number at the top of the first page of your exam sheet and on the envelope. Do NOT seal the envelope!
- Solutions should be complete and clearly present your reasoning. If you use known results (lemmas, theorems, formulas, etc.) you must explicitly state and verify the corresponding conditions.
- 10 points are "free". There are 6 questions and the maximum number of points is 100 . The exam grade is the total number of points divided by 10 .
- You are allowed to have a 2-sided A4-sized paper with handwritten notes.

Question 1 (30 points)

Consider the function

$$
f(z)=z e^{i z} .
$$

(a) (8 points) Prove that

$$
f(z)=e^{-y}(x \cos x-y \sin x)+i e^{-y}(y \cos x+x \sin x),
$$

where $z=x+i y$.
(b) (8 points) Prove, using the Cauchy-Riemann equations, that $f(z)$ is entire.
(c) (6 points) Compute the derivative of $f(z)$.
(d) (8 points) Prove that the function

$$
u(x, y)=e^{-y}(x \cos x-y \sin x)
$$

is harmonic in \mathbb{R}^{2} and find a harmonic conjugate of $u(x, y)$.

Question 2 (15 points)

Evaluate

$$
\mathrm{pv} \int_{-\infty}^{\infty} \frac{e^{i x}}{x^{2}+1} d x
$$

using the calculus of residues.

Question 3 (10 points)

Use Rouché's theorem to show that, if $0<\varepsilon<7 / 4$, then the polynomial $P(z)=z^{3}+\varepsilon z^{2}-1$ has exactly 3 roots in the disk $|z|<2$.

Question 4 (15 points)

Represent the function

$$
f(z)=\frac{z}{z^{2}-1}
$$

(a) (8 points) as a Taylor series around 0 and find its radius of convergence;
(b) (7 points) as a Laurent series in the domain $|z|>1$.

Question 5 (10 points)

Consider the functions

$$
f(z)=\frac{\sin z}{z} \text { and } g(z)=e^{1 / z} .
$$

Determine the singularities of $f(z)$ and $g(z)$, and their types (removable, pole, essential; if pole, specify the order). Make sure to justify your answer.

Question 6 (10 points)

Consider a function $f(z)$ such that $\operatorname{Re}(f(z)) \geq M$ for all $z \in \mathbb{C}$, where M is a real constant. Prove that if $f(z)$ is entire then it must be constant. Hint: consider the function $e^{-f(z)}$.

